
Recommender Systems in Practice 

How companies make product recommendations 

 

 
 

Companies like Amazon, Netflix, Linkedin, and Pandora leverage recommender systems 

to help users discover new and relevant items (products, videos, jobs, music), creating a 

delightful user experience while driving incremental revenue. 

Here we provide a practical overview of recommender systems. First, three major 

systems are reviewed: content-based, collaborative filtering, and hybrid, followed by 

discussions on cold start, scalability, interpretability, and exploitation/exploration. 

 



Content-based recommendation 

At Pandora, a team of musicians labeled each music with more than 400 attributes. Then 

when a user selects a music station, songs that match the station’s attributes will be 

added to the playlist (Music Genome Project|Pandora, Howe|Pandora). 

This is content-based recommendation. Users or items have profiles describing their 

characteristics and the system would recommend an item to a user if the two profiles 

match. Stitch Fix’s fashion box is another example of content-based recommendation. A 

user’s attributes are collected (height, weight, etc.) and matched fashion products are 

put in a box delivered to the user (Stitch Fix|2013). 

For Pandora, manual efforts/costs are needed to create music attributes, but there are 

many cases without such a need. Stitch Fix’s customers provide their own preferences, 

Linkedin users provide their own working experiences and skills, merchants on Amazon 

provide information about their product items, all are freely usable for content-based 

recommendations. 

A straightforward way of matching users and items is keyword matching. For example, 

for job recommendations, one can match a job description to job seekers’ resumes. 

Term frequency-inverse document frequency is often used to put more weights to 

keywords that are unique for an item or user. 

A more systematic way is building a supervised model estimating the propensity of a 

user likes an unseen item. In the model, features are the attributes from users and items 

(e.g., an indicator variable whether a job and a job seeker is in the same industry), and 

the response variable is whether the user likes the item (e.g., whether the job seeker 

would apply for the job). 

Content-based methods are computationally fast and interpretable. They can be easily 

adapted to new items or new users. However, some characteristics of items/users may 

not be easy to capture or describe explicitly. Stitch Fix addressed this by letting machine 

learning handle structured data, and human handle unstructured data (e.g., users’ 

Pinterest board). 

 

 



Collaborative filtering 

Collaborative filtering systems make recommendations based on historic users’ 

preference for items (clicked, watched, purchased, liked, rated, etc.). The preference can 

be presented as a user-item matrix. Here is an example of a matrix describing the 

preference of 4 users on 5 items, where p_{12} is the user 1’s preference on item 2. 

 

 

Although the entries can be numeric, e.g., Netflix’s movie rating prediction challenge 

(rating ranges from 1 to 5), in most applications, they are binary (e.g., clicked, watched, 

purchased). 

In reality, the user-item matrix can be more than millions * millions (e.g., Amazon, 

Youtube), and the majority of entries are missing — the goal of recommender systems is 

to fill those missing entries. 

 

 

Here we describe three collaborative-filtering-related approaches, nearest-neighbor, 

and two methods creating a new latent space: matrix factorization and deep learning. 

 

 



Nearest-neighbor 

Nearest-neighbor-based methods are based on the similarity between pairs of items or 

users. Cosine similarity is often used for measuring the distance. 

 

 

The preference matrix can be represented as item vectors 

 

 

The similarity between item I1 and item I2 is calculated as cos(I1,I2). The matrix can also 

be represented as user vectors 

 

 

The similarity between U1 and U2 is calculated as cos(U1,U2). Note, the missing values in 

the preference matrix are commonly filled with zeros. 

For user_i, we can recommend the items liked by user_i’s most similar users (user-to-

user) or the most similar items of user_i’s liked items (item-to-item). 

Item-to-item approaches are adapted commonly in practice, by Amazon (Amazon|2003), 

Youtube (Youtube|2010), Linkedin (Linkedin|2014), etc. When a customer likes an item, 

an item-to-item system can quickly surface items similar to it (similar items for each item 

are pre-calculated and saved in a key-value data store). In addition, item-to-item 

recommendations can be more interpretable than user-to-user recommendations, e.g., 

the systems can explain why an item is recommended because “you liked X”. 



It is possible that the number of items similar to an item is too small (after applying a 

threshold on the similarity scores). One could expand the similar item list by including 

similar items’ similar items (Youtube|2010). 

After getting the most similar items, a post-processing step can be useful. 

(Youtube|2010) ranked the similar items according to video quality (e.g., measured by 

rating), diversity (e.g., limited the recommendations from one channel), and user 

specificity (e.g., similar videos to a video with more watch time by the user should be 

ranked higher). The three elements were combined with a linear model, providing a final 

ranking. 

Latent-factor methods 

Latent-factor methods create a new and usually reduced feature space of the original 

user or item vectors, leading to reduced noise and faster computations in real-time. 

In the following, we introduce two latent-factor methods — matrix factorization and 

deep learning. 

Matrix factorization 

Matrix factorization was popularly used during the Netflix recommendation challenge, 

especially singular value decomposition and a more practical version for recommender 

systems. 

Singular value decomposition (SVD) decomposes the preference matrix as 

 

 

U and V are unitary matrices. For 4 users and 5 items, it looks like 

 

 



where sigma_1 > sigma_2 > sigma_3 > sigma_4. 

The preference of the first user for the first item can be written as 

 

 

This can be presented as vectors 

 

 

An entrywise product is applied between the sigma vector and the first user vector, and 

then a dot product with the first item vector. It can be seen u and v have the same 

length, i.e., they are in the same latent feature space. The sigma vector represents the 

importance of each feature. 

Now let’s select the top two features based on the sigmas 

 

 

which can be presented as the item and user vectors each has a length of two. 

Simon Funk’s SVD 

Lots of entries in the preference matrix can be missing and the regular SVD has the 

following issues (1) how missing values are imputed can have an undesirable impact on 

the outcome. (2) computational complexity for training can be high with all the entries 

considered. 

During the Netflix challenge, Simon Funk came up with a practical solution (Funk|2006) 

 

 



In the formula, only the non-missing entries p_{ij} are considered. The estimated score 

for the j^{th} item from i^{th} user is 

 

 

Note, user and item vectors do not have unit lengths as in SVD, but it doesn’t matter as 

the sum of squares for error is minimized. Funk’s approach had great success in the 

Netflix challenge, and the idea was implemented by Netflix (Netflix|2012). 

Deep learning embedding 

Deep learning is more flexible (than matrix factorization) in including various factors into 

modeling and creating embeddings. For example, deep learning was used to model 

sequential information by leveraging the skip-gram model, originally used for 

calculating word similarity. (Airbnb|2018, Zillow|2018) 

Say, a user’s item sequence is item1 -> item2 -> item 3 -> item4 -> … The intuition is to 

use each item in the sequence to predict its neighboring items, formulated as a 

classification problem, where each item is one class. The training data include the 

neighboring K items of each item (the left K and right K items). The following figure 

illustrates the pairs of items with K = 1. 

 

 

Furthermore, each item is represented as a one-hot vector that has a length equal to the 

number of items. A neural network takes an item one-hot vector as the input and output 

the vector of one of its similar items, illustrated in the following figure, using (Item2, 

Item1) as the training example. 



The hidden layer is the new feature space (or latent space), and each item can be 

transferred to the new feature space using the weights between the input layer and the 

hidden layer (essentially a linear combination of the original features). 

 

 

In reality, there can be millions of items, and billions of examples are used to train the 

network. To simplify the calculation, the negative sampling idea can be applied. The idea 

is to update only the weights of the output item (Item 1) and a small number of other 

items randomly sampled. In the following, we highlight the items and the weights need 

to be updated. It makes the calculation much faster. 

 



 

Once each item is represented in the new feature space, the similarity between items 

can be calculated, and recommendations can be made based on similarity scores. 

In some cases, users visit a sequence of items before conversion, e.g., an Amazon user 

makes a purchase after a sequence of page views; An Airbnb user books a listing after 

viewing a few listings. This information can be included by adding the purchased item to 

every item’s training pair (Airbnb|2018), shown in the figure below. Items recommended 

in this way could improve the conversion rates. 

 

 



Hybrid approaches 

Hybrid approaches use information from both user-item interactions and users/items’ 

characteristics. 

The “companies you may want to follow” feature at Linkedin used both content and 

collaborative filtering information (Linkedin|2014). To determine whether a company a 

user may want to follow, a logistic regression classifier is built on a set of features. The 

collaborative filtering information is included in a feature indicating whether the 

company is similar to the ones a user already followed. The content information includes 

whether the industry, location, etc. match between the user and the company. 

Deep learning models can be powerful in combining collaborative-filtering and content-

based information. The Youtube recommender system (Youtube|2016) built deep 

learning models to predict users' watch given their previous activities (search queries 

and videos watched) and static information (gender, location, etc.). Watched videos and 

queries are represented as embeddings. Since neural networks typically take fixed-

length inputs, a user’s watched videos or queries vectors are averaged, concatenated 

with other static features. It is recommended that features with multiple categories 

should be embedded into a much smaller space (roughly proportional to the logarithm 

of the number of unique values), and continuous features should be normalized 

between 0 and 1 (Youtube|2016). 

Hybrid methods can depend on content-based recommendations when a user/item has 

no or little activity and become more accurate as more data are available. 

Cold start, Scalability, Interpretability, and Exploitation-

Exploration 

Accurate recommendations cannot be made for new users/items with no or little 

information. This is referred to as the cold start problem. This is a typical issue for 

collaborative filtering systems that rely on user-item interactions. Some heuristics can be 

used. For a new user, the most popular items in the user’s area could be recommended. 

For a new item, some rule-based similarity criteria can be defined. For example, Airbnb 

used the average of 3 geographically closest listings of the same type and price range to 

approximate a new listing (Airbnb|2018). 

Scalability is a key factor when determining which type of recommender systems to 

use. More complex systems need more people, potentially harder to hire, to 



build/maintain with a larger hardware cost. It can be a long-term commitment, and so 

business should understand the incremental business gain vs. the increased cost. With 

that being said, here are a few key elements of building scalable systems. 

Offline batch computing and online serving. With a large number of users and items, one 

has to calculate easily fetchable recommendations offline by batch. For example, 

Linkedin used Hadoop for batch processing the user-item event data, and then the 

recommendations are loaded to a key-value store for low-latency queries in real-time. 

(Linkedin|2014) 

Sampling. When dealing with millions of users and items, sampling can be considered, 

randomly sampling items or users, or removing items without significant user 

engagement. 

Leveraging sparsity. In recommender systems, the user-item preference matrix is often 

very sparse with the majority of the entries being missing. Leveraging the sparsity can 

significantly reduce computational complexity (Amazon|2003). 

Multi-phase modeling. The Youtube recommender system divided the modeling process 

into two steps. In the first phase, only user-item activity data are used to select hundreds 

of candidates out of millions. In the second phase, it is then feasible to use more 

information about the candidate videos for further selection and ranking. 

(Youtube|2016) 

Scale deep networks. Although softmax or other functions are used in the output layer 

for training, during real-time serving time, the probability doesn’t have to be calculated, 

and the nearest-neighbor approach can be used on the output from the last hidden 

layer. Negative sampling mentioned earlier can also be considered so that for each 

training example, only a small number of classes' weights are updated. 

Interpretability. From the customer side, it can be helpful to state why a 

recommendation is made. When recommending a video to a user, Youtube added a link 

to the video that the user watched and triggered the recommendation (Youtube|2010). 

From the modeling side, interpretability helps developers understand and debug the 

system. Content-based approaches are easy to interpret, while collaborative filtering 

models are harder to understand, especially in latent space. One can cluster the items or 

users based their original feature space or latent space (matrix factorization and deep 

learning), and check whether the objects from the same cluster share similar 

characteristics. 



In addition, the t-SNE algorithm (Maaten|2018) can be used to project a high-

dimensional space to 2-dimensional space for visualization (Zillow|2018). It can also be 

useful to have a tool so that one can quickly view recommendations as a sanity check, 

e.g., Airbnb developed an internal exploration tool for validating the recommendations 

(Airbnb|2018). 

Exploitation-Exploration. Recommender systems should not overfit historical user-

item preference data (exploitation), to avoid getting stuck in a local optimal. 

First, one should avoid the training data being fully impacted by previous 

recommendations. Youtube includes videos embedded in other sites for training. The 

videos watched outside Youtube site are not from the recommender system, and can 

effectively surface new content (Youtube|2016). One may also consider injecting 

randomness into the system (e.g., making random recommendations). 

Simple rules can be added to the system to increase the diversity of recommendations. 

For example, in Youtube recommendation (Youtube|2010), videos too similar to each 

other are removed, and the number of videos coming from the same channel is limited. 

Methods from multi-armed bandits may also be applied. The upper confidence bound 

was applied by Uber eats to increase the diversity of recommended restaurants/dishes 

(Uber|2018). The idea of upper confidence bound is using the upper bound of the 

estimated success rate (e.g., order-rate, click-rate, watch-rate). When a new item arrives 

without any information, the confidence interval is [0,1], and so the upper bound is 1. 

Therefore, the new item would have a high chance of being recommended. As the item 

gets more impressions, the estimation would be more accurate, and the upper bound 

would be closer to its actual value. 

Closing 

This article discusses methodologies and key perspectives for building a recommender 

system. In practice, companies should make choices based on multiple factors like 

accuracy, complexity and business impact, under realistic constraints on resources (e.g., 

engineers and software/hardware costs) 
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